Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis.
نویسندگان
چکیده
INTRODUCTION Fracture healing and distraction osteogenesis (DO) are unique postnatal bone formation processes, and neovascularization is critically required for successful bone regeneration. We investigated endothelial progenitor cell (EPC) mobilization during bone regeneration, and the possible contribution of EPCs to increased vascularization and new bone formation, especially in DO. METHODS Mouse tibia fracture and rat tibia DO models were used in this study. The proportion of EPCs among the peripheral and splenic mononuclear cells (MNCs) was determined by examining the endothelial lineage staining characteristics and EPC cell surface markers. Messenger RNA expression of molecules related to EPC mobilization and homing at the fracture site were analyzed by ribonuclease protection assay and reverse-transcription polymerase chain reaction. In the rat tibia DO model, we measured blood flow during DO, and determined the distribution of ex vivo-expanded and intravenously-infused EPCs. RESULTS The proportion of EPCs among the peripheral and splenic MNCs increased after fracture, peaked on post-fracture day 3, and returned to basal levels during the healing period. Messenger RNA expression of EPC mobilizing cytokines such as vascular endothelial growth factor (VEGF), stem cell factor, monocyte chemoattractant protein-1, and stromal cell-derived factor-1, were upregulated at the fracture callus. The plasma VEGF levels peaked prior to the increase in the EPC proportion. Adhesion molecules involved in EPC homing were expressed at the fracture callus. In the DO model, the temporal pattern of the increase in the EPC proportion was similar to that in the fracture healing model, but the EPC proportion increased again during the distraction and consolidation phases. The distraction gap was relatively ischemic during the distraction phase and blood flow increased profusely later in the consolidation phase. The number of EPCs homing to the bone regeneration site in the DO model correlated with the number of transplanted EPCs in a dose-dependent manner. CONCLUSIONS These findings suggest that signals from the bone regeneration site mobilize EPCs from the bone marrow into the peripheral circulation. Increased EPC mobilization and homing may contribute to neovascularization and thus to new bone formation in fracture healing and DO.
منابع مشابه
Lnk-dependent axis of SCF–cKit signal for osteogenesis in bone fracture healing
The therapeutic potential of hematopoietic stem cells/endothelial progenitor cells (HSCs/EPCs) for fracture healing has been demonstrated with evidence for enhanced vasculogenesis/angiogenesis and osteogenesis at the site of fracture. The adaptor protein Lnk has recently been identified as an essential inhibitor of stem cell factor (SCF)-cKit signaling during stem cell self-renewal, and Lnk-def...
متن کاملCirculating CD34-Positive Cells Promote Early Osteogenic differentiation of Human Fracture Hematoma-Derived Progenitor Cells in
INTRODUCTION Human circulating CD34+ cells, an endothelial progenitor cell (EPC)enriched population [1], have been also reported to differentiate into osteoblasts [2]. Previously, we demonstrated that that human circulating CD34+ cells, systemically transplanted into immunodeficient rats with nonhealing fracture, were recruited into fracture sites, contributed to a favorable environment for fra...
متن کاملEffect of two different intensity of physical activity on circulating endothelial progenitor cells (EPC) in healthy young women
The purpose of this study was to determine the effect of two different intensities of physical activity on circulating endothelial progenitor cells (EPC) in healthy young women. For this purpose, 15 female students from volunteers were randomly selected via questionnaire (group 1: mean age 22 ±1/8 years, BMI 20/81±1/91 kg/m2, n = 8. group 2: mean age 21 ±1/5 years, BMI 20/38 ± 1/66 kg/m2, ...
متن کاملFive Days Granulocyte Colony-Stimulating Factor Treatment Increases Bone Formation and Reduces Gap Size of a Rat Segmental Bone Defect: A Pilot Study
Bone is an organ with high natural regenerative capacity and most fractures heal spontaneously when appropriate fracture fixation is provided. However, additional treatment is required for patients with large segmental defects exceeding the endogenous healing potential and for patients suffering from fracture non-unions. These cases are often associated with insufficient vascularization. Transp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2008